17 research outputs found

    A Novel Graphical Lasso based approach towards Segmentation Analysis in Energy Game-Theoretic Frameworks

    Full text link
    Energy game-theoretic frameworks have emerged to be a successful strategy to encourage energy efficient behavior in large scale by leveraging human-in-the-loop strategy. A number of such frameworks have been introduced over the years which formulate the energy saving process as a competitive game with appropriate incentives for energy efficient players. However, prior works involve an incentive design mechanism which is dependent on knowledge of utility functions for all the players in the game, which is hard to compute especially when the number of players is high, common in energy game-theoretic frameworks. Our research proposes that the utilities of players in such a framework can be grouped together to a relatively small number of clusters, and the clusters can then be targeted with tailored incentives. The key to above segmentation analysis is to learn the features leading to human decision making towards energy usage in competitive environments. We propose a novel graphical lasso based approach to perform such segmentation, by studying the feature correlations in a real-world energy social game dataset. To further improve the explainability of the model, we perform causality study using grangers causality. Proposed segmentation analysis results in characteristic clusters demonstrating different energy usage behaviors. We also present avenues to implement intelligent incentive design using proposed segmentation method.Comment: Proceedings of the Special Session on Machine Learning in Energy Application, International Conference on Machine Learning and Applications (ICMLA) 2019. arXiv admin note: text overlap with arXiv:1810.1053

    Machine Learning for Smart and Energy-Efficient Buildings

    Full text link
    Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning

    Data-Centric Machine Learning for Human-Centric Applications

    No full text

    Data-Centric Machine Learning for Human-Centric Applications

    No full text

    Focus on what matters: improved feature selection techniques for personal thermal comfort modelling

    No full text
    Occupants' personal thermal comfort (PTC) is indispensable for their well-being, physical and mental health, and work efficiency. Predicting PTC preferences in a smart home can be a prerequisite to adjusting the indoor temperature for providing a comfortable environment. In this research, we focus on identifying relevant features for predicting PTC preferences. We propose a machine learning-based predictive framework by employing supervised feature selection techniques. We apply two feature selection techniques to select the optimal sets of features to improve the thermal preference prediction performance. The experimental results on a public PTC dataset demonstrated the efficiency of the feature selection techniques that we have applied. In turn, our PTC prediction framework with feature selection techniques achieved state-of-the-art performance in terms of accuracy, Cohen's kappa, and area under the curve (AUC), outperforming conventional methods
    corecore